本日の目標

【考えよう!】

Q.学校の校舎の高さを求めるには、どのような方法を使えばよいのだろう?

※前提条件

・出来るだけお金をかけない。・安全に行う。・学校にあるものなら何でも使ってよい。・1~3 人程度で行えること。

【自分の考え】

【三角比について】

 $※\theta$ は鋭角とする。

図のように∠AOB の辺 OA 上の2点 P,P' から辺 OB に垂線PQ, P'Q'を下ろすと、

2 組の角がそれぞれ等しいので、 $\triangle POQ$ \hookrightarrow $\triangle P'OQ'$

よって、

PQ: OQ = P'Q': OQ'

式変形すると、

$$\frac{PQ}{OQ} = \frac{P'Q'}{OQ'}$$

上の式により、 $\frac{PQ}{OQ}$ の値は、 θ だけによって定まる。

といい、③

で表す。

同様に $\frac{PQ}{OP}$, $\frac{OQ}{OP}$ の値も、 θ だけによって決まる。

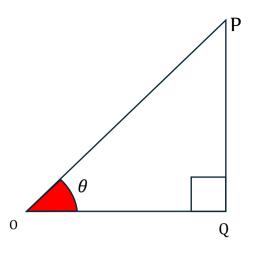
といい、⑥

で表す。

$$\frac{OQ}{OP}$$
 を角 θ の $\underline{?}$ または $\underline{\$}$

といい、⑨

で表す。

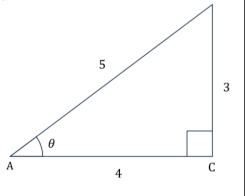

まとめ

右の図の直角三角形において、

 $\sin \theta =$

 $\cos \theta =$

 $\tan \theta =$

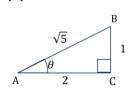

例 1

右の図の直角三角形ABCにおいて、

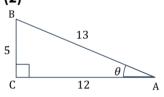
 $\sin \theta =$

 $\cos \theta =$

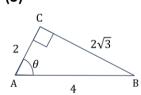
 $\tan \theta =$



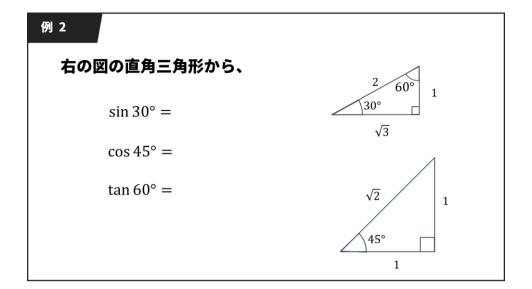
【練習しよう!】


練習しよう!

下の図において、 $\sin\theta$, $\cos\theta$, $\tan\theta$ の値をそれぞれ求めよ。


(1)

(2)



(3)

- (1) $\sin \theta = \cos \theta = \tan \theta =$
- (2) $\sin \theta = \cos \theta = \tan \theta = 0$

- (3) $\sin \theta = \cos \theta = \tan \theta = \cos \theta$

【練習しよう!】

- (1) $\cos 30^{\circ} =$
- (2) $\tan 30^{\circ} =$
- (3) $\sin 45^{\circ} =$

- **(4)** $tan 45^{\circ} =$
- (5) $\sin 60^{\circ} =$
- **(6)** cos60° =____

※ 例2・上の練習問題の値に関しては、この後沢山出てくるので、必ず復習すること!!

【三角比の表】

次のページの表を見ながら、次の問題に答えよう!!

例①) sin 32° = 0.5299

 $\cos 35^{\circ} = 0.8192$

 $\tan 48^{\circ} = 1.1106$

練習① 次の値を求めよう!

(1) sin 24°

(2) cos 83°

(3) tan 66°

例②) $\sin \theta = 0.17$ のとき、三角比の表から $\theta = 10^{\circ}$

練習② 次の鋭角のおおよその大きさを、三角比の表を使って求めよう!

 $(1)\sin\theta=0.26$

- (2) $\cos \theta = 0.53$
- (3) $\tan \theta = 4.3$

【参考】

三角比の表

θ	$\sin\theta$	$\cos\theta$	tanθ	θ	sinθ	$\cos\theta$	$tan\theta$	θ	$\sin\!\theta$	$\cos\theta$	tanθ
1°	0.0175	0.9998	0.0175	31°	0.5150	0.8572	0.6009	61°	0.8746	0.4848	1.8040
2°	0.0349	0.9994	0.0349	32°	0.5299	0.8480	0.6249	62°	0.8829	0.4695	1.8807
3°	0.0523	0.9986	0.0524	33°	0.5446	0.8387	0.6494	63°	0.8910	0.4540	1.9626
4°	0.0698	0.9976	0.0699	34°	0.5592	0.8290	0.6745	64°	0.8988	0.4384	2.0503
5°	0.0872	0.9962	0.0875	35°	0.5736	0.8192	0.7002	65°	0.9063	0.4226	2.1445
6°	0.1045	0.9945	0.1051	36°	0.5878	0.8090	0.7265	66°	0.9135	0.4067	2.2460
7°	0.1219	0.9925	0.1228	37°	0.6018	0.7986	0.7536	67°	0.9205	0.3907	2.3559
8°	0.1392	0.9903	0.1405	38°	0.6157	0.7880	0.7813	68°	0.9272	0.3746	2.4751
9°	0.1564	0.9877	0.1584	39°	0.6293	0.7771	0.8098	69°	0.9336	0.3584	2.6051
10°	0.1736	0.9848	0.1763	40°	0.6428	0.7660	0.8391	70°	0.9397	0.3420	2.7475
11°	0.1908	0.9816	0.1944	41°	0.6561	0.7547	0.8693	71°	0.9455	0.3256	2.9042
12°	0.2079	0.9781	0.2126	42°	0.6691	0.7431	0.9004	72°	0.9511	0.3090	3.0777
13°	0.2250	0.9744	0.2309	43°	0.6820	0.7314	0.9325	73°	0.9563	0.2924	3.2709
14°	0.2419	0.9703	0.2493	44°	0.6947	0.7193	0.9657	74°	0.9613	0.2756	3.4874
15°	0.2588	0.9659	0.2679	45°	0.7071	0.7071	1.0000	75°	0.9659	0.2588	3.7321
16°	0.2756	0.9613	0.2867	46°	0.7193	0.6947	1.0355	76°	0.9703	0.2419	4.0108
17°	0.2924	0.9563	0.3057	47°	0.7314	0.6820	1.0724	77°	0.9744	0.2250	4.3315
18°	0.3090	0.9511	0.3249	48°	0.7431	0.6691	1.1106	78°	0.9781	0.2079	4.7046
19°	0.3256	0.9455	0.3443	49°	0.7547	0.6561	1.1504	79°	0.9816	0.1908	5.1446
20°	0.3420	0.9397	0.3640	50°	0.7660	0.6428	1.1918	80°	0.9848	0.1736	5.6713
21°	0.3584	0.9336	0.3839	51°	0.7771	0.6293	1.2349	81°	0.9877	0.1564	6.3138
22°	0.3746	0.9272	0.4040	52°	0.7880	0.6157	1.2799	82°	0.9903	0.1392	7.1154
23°	0.3907	0.9205	0.4245	53°	0.7986	0.6018	1.3270	83°	0.9925	0.1219	8.1443
24°	0.4067	0.9135	0.4452	54°	0.8090	0.5878	1.3764	84°	0.9945	0.1045	9.5144
25°	0.4226	0.9063	0.4663	55°	0.8192	0.5736	1.4281	85°	0.9962	0.0872	11.4301
26°	0.4384	0.8988	0.4877	56°	0.8290	0.5592	1.4826	86°	0.9976	0.0698	14.3007
27°	0.4540	0.8910	0.5095	57°	0.8387	0.5446	1.5399	87°	0.9986	0.0523	19.0811
28°	0.4695	0.8829	0.5317	58°	0.8480	0.5299	1.6003	88°	0.9994	0.0349	28.6363
29°	0.4848	0.8746	0.5543	59°	0.8572	0.5150	1.6643	89°	0.9998	0.0175	57.2900
30°	0.5000	0.8660	0.5774	60°	0.8660	0.5000	1.7321	90°	1.0000	0.0000	